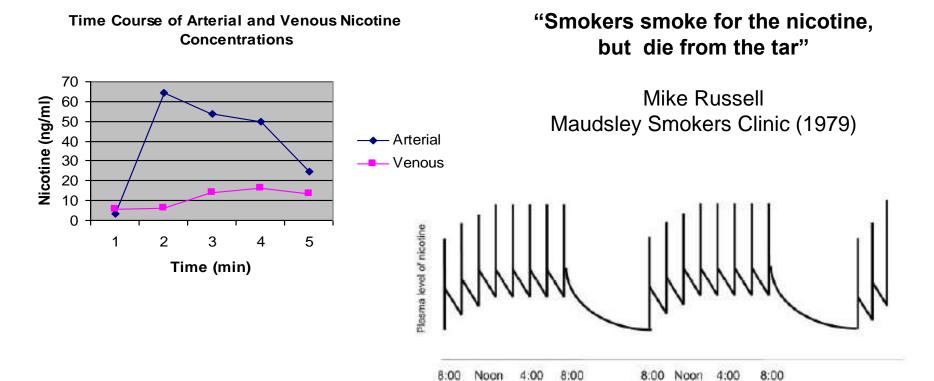
THE SPECTRUM OF HARM

Marcus Munafò

Disclosure

Received smoking cessation products (NRT, varenicline) for use in research from GlaxoSmithKline, Pfizer and Rusan Pharma, and honoraria for invited lectures GlaxoSmithKline, Pfizer, and Sepracor.

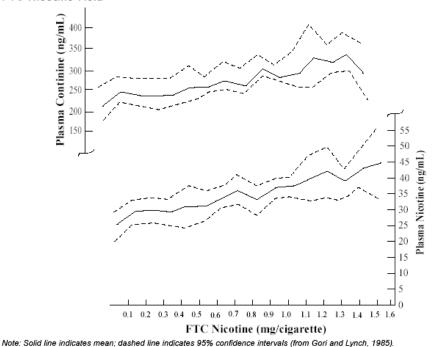

Provided consultancy to the European Commission, the American Institutes for Research, the National Audit Office, the CHDI Foundation, the World Health Organisation, Actelion, and Servier.

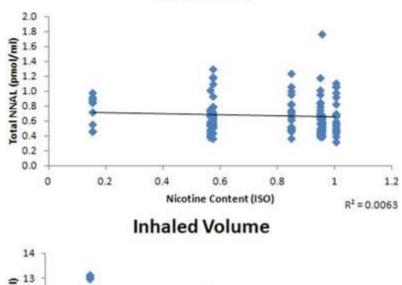
Currently receive research income from the Medical Research Council, the Wellcome Trust, the National Institutes for Health Research, Cancer Research UK, AstraZeneca, Pfizer and Rusan Pharma.

Tobacco Dependence

day 1

Benowitz et al. (1982). Clin Pharmacol Ther, 32, 758-764.



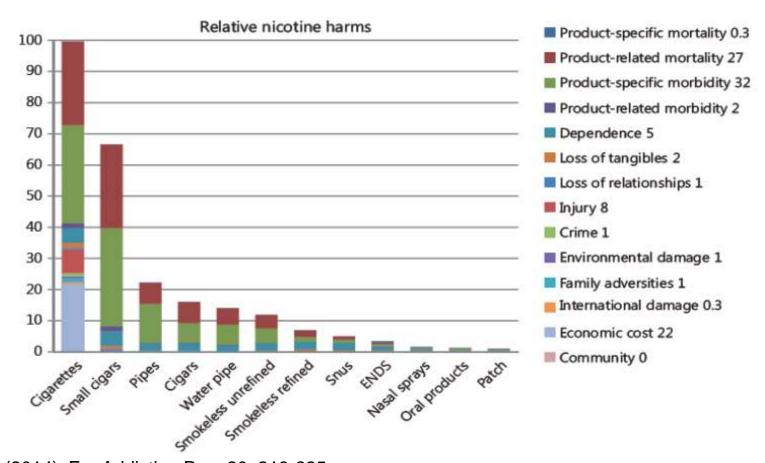

day 3

day 2

Tobacco Dependence

Plasma Cotinine and Nicotine Concentrations in Cigarette Smokers According to the FTC Nicotine Yield

Total NNAL


13 12 12 10 9 8 0 0.2 0.4 0.6 0.8 1 1.2 Nicotine Content (ISO) R² = 0.7956

Munafò & McNeill (2013). J Psychopharmacol, 27, 13-18.

Harm Reduction

Nutt et al. (2014). Eur Addiction Res, 20, 218-225.

Harm Reduction

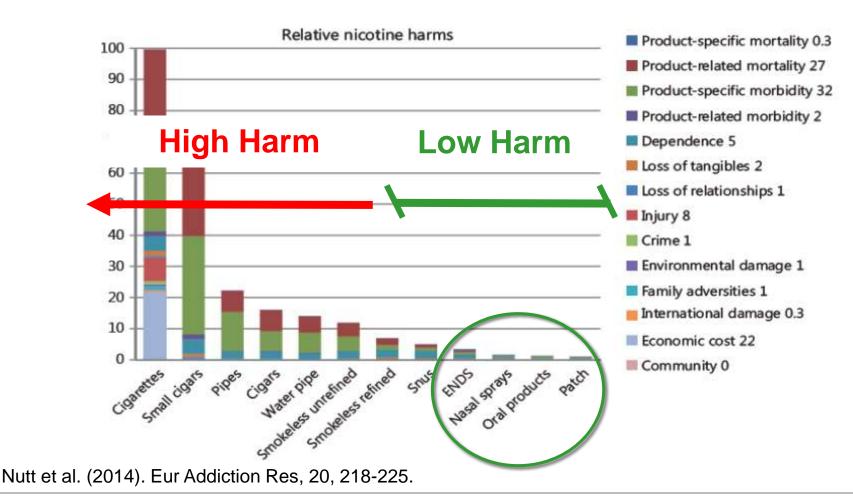
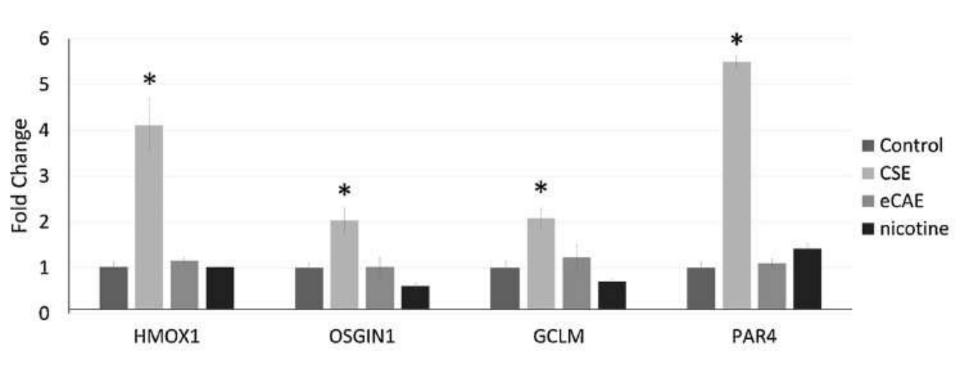


Table 4 Concentrations (µg/m³) of selected compounds during the 8-m³ emission test chamber measurement of e-cigarette A and conventional cigarette using Tenax TA and DNPH

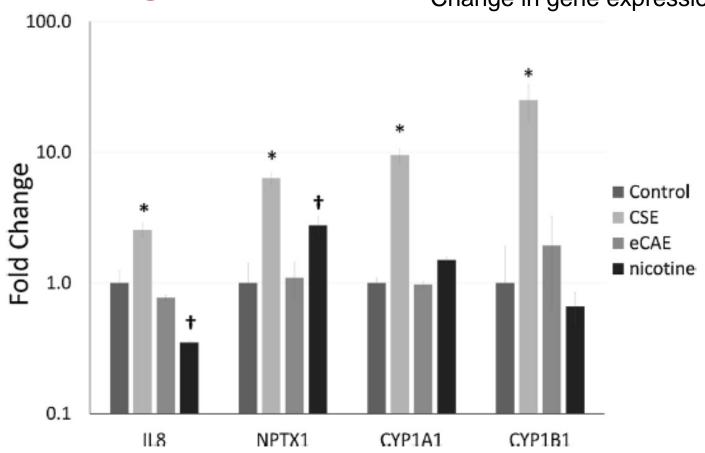
Compounds	CAS	Participant blank	E-cigarette			Conventional cigarette
			Liquid 1	Liquid 2	Liquid 3	
1,2-Propanediol	57-55-6	<1	<1	<1	<1	112
1-Hydroxy-2-propanone	116-09-6	<1	<1	<1	<1	62
2,3-Butanedione	431-03-8	<1	<1	<1	<1	21
2,5-Dimethylfuran	625-86-5	<1	<1	<1	<1	5
2-Butanone (MEK)	78-93-3	<1	2	2	2	19
2-Furaldehyde	98-01-1	<1	<1	<1	<1	21
2-Methylfurane	534-22-5	<1	<1	<1	<1	19
3-Ethenyl-pyridine ⁸	1121-55-7	<1	<1	<1	<1	24
Acetic acid	64-19-7	<1	11	13	14	68 64
Acetone	67-64-1	<1	17	18	25	64
Benzene	71-43-2	<1	<1	<1	<1	22
Isoprene	78-79-5	8	6	7	10	135
Limonene	5989-27-5	<1	<1	<1	<1	21
m,p-Xylene	1330-20-7	<1	<1	<1	<1	18
Phenol	108-95-2	<1	<1	<1	<1	15
Pyrrole	109-97-7	<1	<1	<1	<1	61
Taluene	108-88-3	<1	<1	<1	<1	44
Formaldehyde ^b	50-00-0	<1	8	11	16	86
Acetaldehyde ^b	75-07-0	<1	2	2	3	119
Propanal ^b	123-38-6	< 0.2	<0.2	<0.2	<0.2	12

Schripp et al. (2013). Indoor Air, 23, 25-31.


Toxic compound	Conventional cigarette [µg]	Electronic cigarette [µg per 15 puffs]	Conventional vs. electronic cigarette
Formaldehyde	1.6-52	0.20-5.61	9
Acetaldehyde	52-140	0.11-1.36	130
Acrolein	4.6-14	0.07-4.19	4
Toluene	6.4-9.0	0.02-0.63	23
NNN	0.012-0.37	0.00008-0.00043	145
NNK	0.009-0.08	0.00011-0.00283	30
Cd	0.03-0.35	0.001-0.022	16
Ni	0.003-0.60	0.011-0.029	15

Goniewicz et al. (2013). Tob Control, 23, 133-139.

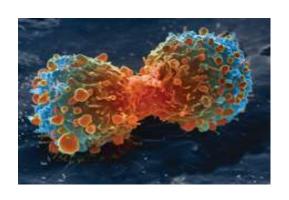
Change in mRNA expression



Teasdale et al. (2016). Drug Alcohol Depend.

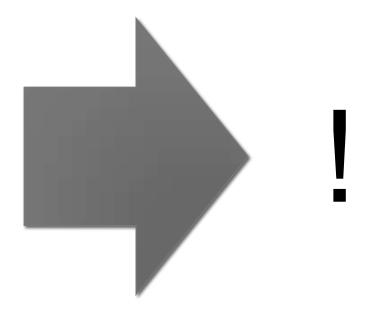
Change in gene expression

Teasdale et al. (2016). Drug Alcohol Depend.

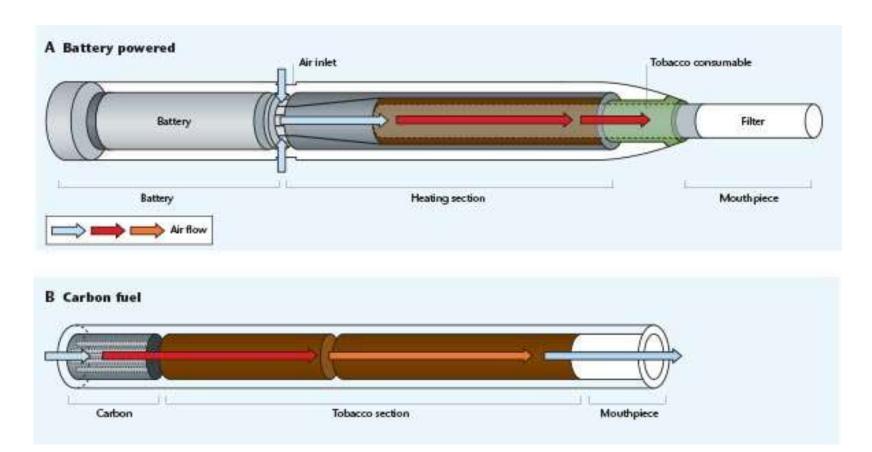


?

?



- Flavours
- Inhalation Topography
- Nicotine concentration
- Battery strength
- Device


- Flavours
- Inhalation Topography
- Nicotine concentration
- Battery strength
- Device

Emerging Products

Conclusions

- Stepped approach to estimating harm:
 - Toxicant levels
 - Biological impact in model systems
 - Biological impact in humans
- Several challenges:
 - Large analytical space
 - Rapidly changing landscape
 - Emerging products (e.g. heat-not-burn)

Acknowledgements

marcus.munafo@bristol.ac.uk

@MarcusMunafo

@BristolTARG

http://www.bristol.ac.uk/expsych/research/brain/targ/

Tobacco and Alcohol Research Group:

Olivia Abrams Research Assistant

Angela Attwood Postdoc

Anna Blackwell Research Assistant Alex Board Research Assistant

Emily Crowe PhD Student

Katie Drax Research Assistant

Maddy Dyer PhD Student PhD Student Kayleigh Easey PhD Student Andy Eastwood Meg Fluharty PhD Student Suzi Gage Postdoc Meryem Grabski PhD Student PhD Student **Eleanor Kennedy** Jasmine Khouja PhD Student Glenda Lassi Postdoc PhD Student Rebecca Lawn Jim Lumsden PhD Student Olivia Mavnard Postdoc Hannah Sallis Postdoc

Carlos Sillero Research Assistant

Andy Skinner Postdoc

Chris Stone Research Assistant

Amy Taylor Postdoc Gemma Taylor Postdoc

Daniel Toze Research Assistant

David Troy PhD Student

